Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 5, Pages 451–470
DOI: https://doi.org/10.33048/alglog.2021.60.501
(Mi al2679)
 

This article is cited in 1 scientific paper (total in 1 paper)

The category of equivalence relations

V. Delle Rosea, L. San Maurob, A. Sorbia

a Dipartimento di Ingegneria Informatiace e Scienze Matematiche Universitá Degli Studi di Siena, Siena, ITALY
b Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, AUSTRIA
Full-text PDF (298 kB) Citations (1)
References:
Abstract: We make some beginning observations about the category $\mathbb{E}\mathrm{q}$ of equivalence relations on the set of natural numbers, where a morphism between two equivalence relations $R$ and $S$ is a mapping from the set of $R$-equivalence classes to that of $S$-equivalence classes, which is induced by a computable function. We also consider some full subcategories of $\mathbb{E}\mathrm{q}$, such as the category $\mathbb{E}\mathrm{q}(\Sigma^0_1)$ of computably enumerable equivalence relations (called ceers), the category $\mathbb{E}\mathrm{q}(\Pi^0_1)$ of co-computably enumerable equivalence relations, and the category $\mathbb{E}\mathrm{q}(\mathrm{Dark}^*)$ whose objects are the so-called dark ceers plus the ceers with finitely many equivalence classes. Although in all these categories the monomorphisms coincide with the injective morphisms, we show that in $\mathbb{E}\mathrm{q}(\Sigma^0_1)$ the epimorphisms coincide with the onto morphisms, but in $\mathbb{E}\mathrm{q}(\Pi^0_1)$ there are epimorphisms that are not onto. Moreover, $\mathbb{E}\mathrm{q}$, $\mathbb{E}\mathrm{q}(\Sigma^0_1)$, and $\mathbb{E}\mathrm{q}(\mathrm{Dark}^*)$ are closed under finite products, binary coproducts, and coequalizers, but we give an example of two morphisms in $\mathbb{E}\mathrm{q}(\Pi^0_1)$ whose coequalizer in $\mathbb{E}\mathrm{q}$ is not an object of $\mathbb{E}\mathrm{q}(\Pi^0_1)$.
Keywords: category of equivalence relations on set of natural numbers, category of ceers, category of coceers, category of dark ceers and finite ceers.
Received: 03.07.2020
Revised: 29.11.2021
English version:
Algebra and Logic, 2021, Volume 60, Issue 5, Pages 295–307
DOI: https://doi.org/10.1007/s10469-021-09656-6
Bibliographic databases:
Document Type: Article
UDC: 510.5:512.58
Language: Russian
Citation: V. Delle Rose, L. San Mauro, A. Sorbi, “The category of equivalence relations”, Algebra Logika, 60:5 (2021), 451–470; Algebra and Logic, 60:5 (2021), 295–307
Citation in format AMSBIB
\Bibitem{DelSanSor21}
\by V.~Delle Rose, L.~San Mauro, A.~Sorbi
\paper The category of equivalence relations
\jour Algebra Logika
\yr 2021
\vol 60
\issue 5
\pages 451--470
\mathnet{http://mi.mathnet.ru/al2679}
\crossref{https://doi.org/10.33048/alglog.2021.60.501}
\transl
\jour Algebra and Logic
\yr 2021
\vol 60
\issue 5
\pages 295--307
\crossref{https://doi.org/10.1007/s10469-021-09656-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000725412800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120580064}
Linking options:
  • https://www.mathnet.ru/eng/al2679
  • https://www.mathnet.ru/eng/al/v60/i5/p451
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :37
    References:33
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024