|
This article is cited in 7 scientific papers (total in 7 papers)
$T_1$-separable numberings of subdirectly indecomposable algebras
N. Kh. Kasymova, A. S. Morozovb, I. A. Khodzhamuratovaa a National University of Uzbekistan named after M. Ulugbek, Tashkent
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract:
We prove the existence of a natural subclass of subdirectly indecomposable algebras all of whose Hausdorff numberings are negative. We also construct a $T_1$-separable nonnegative subdirectly indecomposable algebra with Artin congruence lattice.
Keywords:
subdirect indecomposability, Artinianness, Noetherianness, computable and enumerable topologies, topological numbered algebras, translational precompleteness, positivity, negativity, effective separability.
Received: 16.12.2020 Revised: 26.11.2021
Citation:
N. Kh. Kasymov, A. S. Morozov, I. A. Khodzhamuratova, “$T_1$-separable numberings of subdirectly indecomposable algebras”, Algebra Logika, 60:4 (2021), 400–424; Algebra and Logic, 60:4 (2021), 263–278
Linking options:
https://www.mathnet.ru/eng/al2674 https://www.mathnet.ru/eng/al/v60/i4/p400
|
Statistics & downloads: |
Abstract page: | 250 | Full-text PDF : | 29 | References: | 20 | First page: | 6 |
|