Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 3, Pages 327–334
DOI: https://doi.org/10.33048/alglog.2021.60.306
(Mi al2667)
 

$(2,3)$-generated groups with small element orders

N. Yanga, A. S. Mamontovbc

a School Sci, Jiangnan Univ., Wuxi, P. R. CHINA
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Novosibirsk State University
References:
Abstract: A periodic group is called an $OC_n$-group if the set of its element orders consists of all natural numbers from $1$ to some natural $n$. W. Shi posed the question whether every $OC_n$-group is locally finite. Until now, the case $n=8$ remains open. Here we prove that if a group is generated by an involution and an element of order $3$, and its element orders do not exceed $8$, then it is finite. Thereby we obtain an affirmative answer to Shi's question for $n=8$ for $(2,3)$-generated subgroups.
Keywords: locally finite group, $OC_n$-group, $(2,3)$-generated group, involution.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1675
National Natural Science Foundation of China 11301227
Supported by NNSF of China, grant No. 11301227. Supported byMathematical Center in Akademgorodok, Agreement with RFMinistry of Education and Science No. 075-15-2019-1675.
Received: 02.04.2021
Revised: 18.10.2021
English version:
Algebra and Logic, 2021, Volume 60, Issue 3, Pages 217–222
DOI: https://doi.org/10.1007/s10469-021-09644-w
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. Yang, A. S. Mamontov, “$(2,3)$-generated groups with small element orders”, Algebra Logika, 60:3 (2021), 327–334; Algebra and Logic, 60:3 (2021), 217–222
Citation in format AMSBIB
\Bibitem{YanMam21}
\by N.~Yang, A.~S.~Mamontov
\paper $(2,3)$-generated groups with small element orders
\jour Algebra Logika
\yr 2021
\vol 60
\issue 3
\pages 327--334
\mathnet{http://mi.mathnet.ru/al2667}
\crossref{https://doi.org/10.33048/alglog.2021.60.306}
\transl
\jour Algebra and Logic
\yr 2021
\vol 60
\issue 3
\pages 217--222
\crossref{https://doi.org/10.1007/s10469-021-09644-w}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000714533400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118526554}
Linking options:
  • https://www.mathnet.ru/eng/al2667
  • https://www.mathnet.ru/eng/al/v60/i3/p327
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :36
    References:30
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024