Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 3, Pages 313–326
DOI: https://doi.org/10.33048/alglog.2021.60.305
(Mi al2666)
 

The supersolvable residual of a finite group factorized by pairwise permutable seminormal subgroups

A. A. Trofimuk

A. S. Pushkin Brest State University
References:
Abstract: A subgroup $A$ is seminormal in a finite group $G$ if there exists a subgroup $B$ such that $G=AB$ and $AX$ is a subgroup for each subgroup $X$ from $B$. We study a group $G=G_1G_2\ldots G_n$ with pairwise permutable supersolvable groups $G_1,\ldots,G_n$ such that $G_i$ and $G_j$ are seminormal in $G_iG_j$ for any $i,j\in\{1,\ldots,n\}$, $i\neq j$. It is stated that $G^\mathfrak U=(G^\prime)^\mathfrak N$. Here $\mathfrak N$ and $\mathfrak U$ are the formations of all nilpotent and supersolvable groups, and $H^\mathfrak X$ and $H^{\prime}$ are the $\mathfrak X$-residual and the derived subgroup, respectively, of a group $H$. It is proved that a group $G=G_1G_2\ldots G_n$ with pairwise permutable subgroups $G_1,\ldots,G_n$ is supersolvable provided that all Sylow subgroups of $G_i$ and $G_j$ are seminormal in $G_iG_j$ for any $i,j\in\{1,\ldots,n\}$, $i\neq j$.
Keywords: supersolvable group, nilpotent group, seminormal subgroup, derived subgroup, $\mathfrak X$-residual, Sylow subgroup.
Received: 29.11.2020
Revised: 18.10.2021
English version:
Algebra and Logic, 2021, Volume 60, Issue 3, Pages 207–216
DOI: https://doi.org/10.1007/s10469-021-09643-x
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. A. Trofimuk, “The supersolvable residual of a finite group factorized by pairwise permutable seminormal subgroups”, Algebra Logika, 60:3 (2021), 313–326; Algebra and Logic, 60:3 (2021), 207–216
Citation in format AMSBIB
\Bibitem{Tro21}
\by A.~A.~Trofimuk
\paper The supersolvable residual of a finite group factorized by pairwise permutable seminormal subgroups
\jour Algebra Logika
\yr 2021
\vol 60
\issue 3
\pages 313--326
\mathnet{http://mi.mathnet.ru/al2666}
\crossref{https://doi.org/10.33048/alglog.2021.60.305}
\transl
\jour Algebra and Logic
\yr 2021
\vol 60
\issue 3
\pages 207--216
\crossref{https://doi.org/10.1007/s10469-021-09643-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000714879000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118633926}
Linking options:
  • https://www.mathnet.ru/eng/al2666
  • https://www.mathnet.ru/eng/al/v60/i3/p313
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :37
    References:40
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024