Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 3, Pages 286–297
DOI: https://doi.org/10.33048/alglog.2021.60.302
(Mi al2663)
 

This article is cited in 3 scientific papers (total in 3 papers)

The closures of wreath products in product action

A. V. Vasilevab, I. N. Ponomarenkocb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (231 kB) Citations (3)
References:
Abstract: Let $m$ be a positive integer and let $\Omega$ be a finite set. The $m$-closure of $G\le{\rm Sym} (\Omega)$ is the largest permutation group $G^{(m)}$ on $\Omega$ having the same orbits as $G$ in its induced action on the Cartesian product $\Omega^m$. An exact formula for the $m$-closure of the wreath product in product action is given. As a corollary, a sufficient condition is obtained for this $m$-closure to be included in the wreath product of the $m$-closures of the factors.
Keywords: right-symmetric ring, left-symmetric algebra, pre-Lie algebra, prime ring, Pierce decomposition, $(1,1)$-superalgebra.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1613
Supported by Mathematical Center in Akademgorodok, Agreement with RF Ministry of Education and Science No. 075-15-2019-1613.
Received: 20.07.2021
Revised: 18.10.2021
English version:
Algebra and Logic, 2021, Volume 60, Issue 3, Pages 188–195
DOI: https://doi.org/10.1007/s10469-021-09640-0
Bibliographic databases:
Document Type: Article
UDC: 512.542.7
Language: Russian
Citation: A. V. Vasilev, I. N. Ponomarenko, “The closures of wreath products in product action”, Algebra Logika, 60:3 (2021), 286–297; Algebra and Logic, 60:3 (2021), 188–195
Citation in format AMSBIB
\Bibitem{VasPon21}
\by A.~V.~Vasilev, I.~N.~Ponomarenko
\paper The closures of wreath products in product action
\jour Algebra Logika
\yr 2021
\vol 60
\issue 3
\pages 286--297
\mathnet{http://mi.mathnet.ru/al2663}
\crossref{https://doi.org/10.33048/alglog.2021.60.302}
\transl
\jour Algebra and Logic
\yr 2021
\vol 60
\issue 3
\pages 188--195
\crossref{https://doi.org/10.1007/s10469-021-09640-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000714533400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118576704}
Linking options:
  • https://www.mathnet.ru/eng/al2663
  • https://www.mathnet.ru/eng/al/v60/i3/p286
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :31
    References:30
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024