Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2000, Volume 39, Number 1, Pages 74–86 (Mi al265)  

This article is cited in 38 scientific papers (total in 38 papers)

On infinite groups with abelian centralizers of involution

V. D. Mazurov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: We obtain two characterizations of the projective linear group $\mathrm{PGL}_2(P)$ over a locally finite field $P$ of characteristic 2. The first is defined in terms of permutation groups; the second, in terms of the structure of the centralizers of involution. We use one of the characterizations to prove the existence of infinite groups recognizable by the set of their element orders.
Received: 06.10.1998
Revised: 03.03.1999
English version:
Algebra and Logic, 2000, Volume 39, Issue 1, Pages 42–49
DOI: https://doi.org/10.1007/BF02681567
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: V. D. Mazurov, “On infinite groups with abelian centralizers of involution”, Algebra Logika, 39:1 (2000), 74–86; Algebra and Logic, 39:1 (2000), 42–49
Citation in format AMSBIB
\Bibitem{Maz00}
\by V.~D.~Mazurov
\paper On infinite groups with abelian centralizers of involution
\jour Algebra Logika
\yr 2000
\vol 39
\issue 1
\pages 74--86
\mathnet{http://mi.mathnet.ru/al265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1782318}
\zmath{https://zbmath.org/?q=an:0960.20025}
\transl
\jour Algebra and Logic
\yr 2000
\vol 39
\issue 1
\pages 42--49
\crossref{https://doi.org/10.1007/BF02681567}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1842619664}
Linking options:
  • https://www.mathnet.ru/eng/al265
  • https://www.mathnet.ru/eng/al/v39/i1/p74
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:627
    Full-text PDF :188
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024