Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2021, Volume 60, Number 1, Pages 3–22
DOI: https://doi.org/10.33048/alglog.2021.60.101
(Mi al2646)
 

This article is cited in 2 scientific papers (total in 2 papers)

A semigroup of theories and its lattice of idempotent elements

M. I. Bekenova, A. M. Nurakunovb

a Eurasian National University named after L.N. Gumilyov, Nur-Sultan
b Institute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic
Full-text PDF (262 kB) Citations (2)
References:
Abstract: On the set of all first-order theories $T(\sigma)$ of similarity type $\sigma$, a binary operation $\{\cdot\}$ is defined by the rule $T\cdot S= {\rm Th}(\{A\times B\mid A\models T$ and $B\models S\})$ for any theories $T, S\in T(\sigma)$. The structure $\langle T(\sigma);\cdot\rangle$ forms a commutative semigroup, which is called a semigroup of theories.
We prove that a semigroup of theories is an ideal extension of a semigroup $S^*_T$ by a semigroup $S_T$. The set of all idempotent elements of a semigroup of theories forms a complete lattice with respect to the partial order $\leq$ defined as $T\leq S$ iff $T\cdot S=S$ for all $T, S\in T(\sigma)$. Also the set of all idempotent complete theories forms a complete lattice with respect to $\leq$, which is not necessarily a sublattice of the lattice of idempotent theories.
Keywords: theory, complete theory, elementary equivalence, algebraic structure, direct product of structures, semigroup, lattice.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP09259295
M. I. Bekenov is supported by MES RK, project No. AP09259295.
Received: 02.05.2020
Revised: 31.05.2021
English version:
Algebra and Logic, 2021, Volume 60, Issue 1, Pages 1–14
DOI: https://doi.org/10.1007/s10469-021-09623-1
Bibliographic databases:
Document Type: Article
UDC: 510.67
Language: Russian
Citation: M. I. Bekenov, A. M. Nurakunov, “A semigroup of theories and its lattice of idempotent elements”, Algebra Logika, 60:1 (2021), 3–22; Algebra and Logic, 60:1 (2021), 1–14
Citation in format AMSBIB
\Bibitem{BekNur21}
\by M.~I.~Bekenov, A.~M.~Nurakunov
\paper A semigroup of theories and its lattice of idempotent elements
\jour Algebra Logika
\yr 2021
\vol 60
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/al2646}
\crossref{https://doi.org/10.33048/alglog.2021.60.101}
\transl
\jour Algebra and Logic
\yr 2021
\vol 60
\issue 1
\pages 1--14
\crossref{https://doi.org/10.1007/s10469-021-09623-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664523200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107895276}
Linking options:
  • https://www.mathnet.ru/eng/al2646
  • https://www.mathnet.ru/eng/al/v60/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :66
    References:34
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024