Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2020, Volume 59, Number 6, Pages 702–718
DOI: https://doi.org/10.33048/alglog.2020.59.605
(Mi al2643)
 

Irreflexive modality on a chain of type $\omega$ and Novikov completeness

A. D. Yashin

Udmurt State University, Izhevsk
References:
Abstract: We consider a $\varphi$-logic $\mathcal{L}(\omega)$ of a frame of order type $\omega$ endowed with an irreflexive operator. The irreflexive modality in $LC$ was treated by the author in [Sib. Mat. Zh., 55, No. 1 (2014), 228–234] where it was shown that this modality on the class of finite chains, on the one hand, and on a single chain of order type $\omega$, on the other hand, generates inconsistent $\varphi$-logics over $LC$. There, also, it was stated that $\mathcal{L}(\omega)$ defines a new nonconstant connective in $LC$. Here we establish that the $\varphi$-logic $\mathcal{L}(\omega)$ is Novikov complete over $LC$.
Keywords: $\varphi$-logic, irreflexive modality, chain of order type $\omega$, Novikov completeness.
Received: 16.12.2019
Revised: 05.03.2021
English version:
Algebra and Logic, 2021, Volume 59, Issue 6, Pages 471–482
DOI: https://doi.org/10.1007/s10469-021-09618-y
Bibliographic databases:
Document Type: Article
UDC: 510.64
Language: Russian
Citation: A. D. Yashin, “Irreflexive modality on a chain of type $\omega$ and Novikov completeness”, Algebra Logika, 59:6 (2020), 702–718; Algebra and Logic, 59:6 (2021), 471–482
Citation in format AMSBIB
\Bibitem{Yas20}
\by A.~D.~Yashin
\paper Irreflexive modality on a chain of type $\omega$ and Novikov completeness
\jour Algebra Logika
\yr 2020
\vol 59
\issue 6
\pages 702--718
\mathnet{http://mi.mathnet.ru/al2643}
\crossref{https://doi.org/10.33048/alglog.2020.59.605}
\transl
\jour Algebra and Logic
\yr 2021
\vol 59
\issue 6
\pages 471--482
\crossref{https://doi.org/10.1007/s10469-021-09618-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000630661000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102735655}
Linking options:
  • https://www.mathnet.ru/eng/al2643
  • https://www.mathnet.ru/eng/al/v59/i6/p702
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:139
    Full-text PDF :20
    References:31
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024