Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2020, Volume 59, Number 5, Pages 529–541
DOI: https://doi.org/10.33048/alglog.2020.59.502
(Mi al2632)
 

This article is cited in 2 scientific papers (total in 2 papers)

Universal equivalence of generalized Baumslag–Solitar groups

F. A. Dudkinab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (263 kB) Citations (2)
References:
Abstract: A finitely generated group acting on a tree so that all vertex and edge stabilizers are infinite cyclic groups is called a generalized Baumslag–Solitar group (a $GBS$-group). Every $GBS$-group is the fundamental group $\pi_1(\mathbb{A})$ of a suitable labeled graph $\mathbb{A}$. We prove that if $\mathbb{A}$ and $\mathbb{B}$ are labeled trees, then the groups $\pi_1(\mathbb{A})$ and $\pi_1(\mathbb{B})$ are universally equivalent iff $\pi_1(\mathbb{A})$ and $\pi_1(\mathbb{B})$ are embeddable into each other. An algorithm for verifying universal equivalence is pointed out. Moreover, we specify simple conditions for checking this criterion in the case where the centralizer dimension is equal to $3$.
Keywords: generalized Baumslag–Solitar group, universal equivalence, existential equivalence, embedding of groups.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.1.1, проект № 0314-2019-0001
Supported by SB RAS Fundamental Research Program I.1.1, project No. 0314-2019-0001.
Received: 10.06.2020
Revised: 27.11.2020
English version:
Algebra and Logic, 2020, Volume 59, Issue 5, Pages 357–366
DOI: https://doi.org/10.1007/s10469-020-09609-5
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: F. A. Dudkin, “Universal equivalence of generalized Baumslag–Solitar groups”, Algebra Logika, 59:5 (2020), 529–541; Algebra and Logic, 59:5 (2020), 357–366
Citation in format AMSBIB
\Bibitem{Dud20}
\by F.~A.~Dudkin
\paper Universal equivalence of generalized Baumslag--Solitar groups
\jour Algebra Logika
\yr 2020
\vol 59
\issue 5
\pages 529--541
\mathnet{http://mi.mathnet.ru/al2632}
\crossref{https://doi.org/10.33048/alglog.2020.59.502}
\transl
\jour Algebra and Logic
\yr 2020
\vol 59
\issue 5
\pages 357--366
\crossref{https://doi.org/10.1007/s10469-020-09609-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000593834300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096847064}
Linking options:
  • https://www.mathnet.ru/eng/al2632
  • https://www.mathnet.ru/eng/al/v59/i5/p529
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:164
    Full-text PDF :54
    References:36
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024