|
The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$
A. A. Makhnev, D. V. Paduchikh Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Abstract:
We point out possible automorphisms of a distance-regular graph $\Gamma$ with intersection array $\{55,54,2;1,1,54\}$ and spectrum $55^1,7^{1617},-1^{110},-8^{1408}$.
Keywords:
Moore graph, distance-regular graph, automorphism.
Received: 14.02.2019 Revised: 24.11.2020
Citation:
A. A. Makhnev, D. V. Paduchikh, “The largest Moore graph and a distance-regular graph with intersection array $\{55,54,2;1,1,54\}$”, Algebra Logika, 59:4 (2020), 471–479; Algebra and Logic, 59:4 (2020), 322–327
Linking options:
https://www.mathnet.ru/eng/al2627 https://www.mathnet.ru/eng/al/v59/i4/p471
|
Statistics & downloads: |
Abstract page: | 223 | Full-text PDF : | 23 | References: | 25 | First page: | 13 |
|