Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2020, Volume 59, Number 3, Pages 323–333
DOI: https://doi.org/10.33048/alglog.2020.59.303
(Mi al2617)
 

This article is cited in 8 scientific papers (total in 8 papers)

Structure of quasivariety lattices. III. Finitely partitionable bases

A. V. Kravchenkoabcd, A. M. Nurakunove, M. V. Schwidefskydbc

a Siberian Institute of Management — Branch of the Russian Presidental Academy of National Economics and Public Administration, Novosibirsk
b Novosibirsk State Technical University
c Novosibirsk State University
d Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
e Institute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic
Full-text PDF (238 kB) Citations (8)
References:
Abstract: We prove that each quasivariety containing a $\mathrm{B}$-class has continuum many subquasivarieties with finitely partitionable $\omega$-independent quasi-equational basis.
Keywords: independent basis, quasi-identity, quasivariety, finitely partitionable basis.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.1.1, проект № 0314-2019-0003
Ministry of Education and Science of the Republic of Kazakhstan AP05132349
Russian Science Foundation 19-11-00209
A. V. Kravchenko and M. V. Schwidefsky are Supported by SB RAS Fundamental Research Program I.1.1, project No. 0314-2019-0003. A. M. Nurakunov is Supported by MES RK, project No. AP05132349 “Computability, interpretability and algebraic structure.” M. V. Schwidefsky is Supported by Russian Science Foundation, project No. 19-11-00209 (results of Sec. 9).
Received: 30.05.2019
Revised: 21.10.2020
English version:
Algebra and Logic, 2020, Volume 59, Issue 3, Pages 222–229
DOI: https://doi.org/10.1007/s10469-020-09594-9
Bibliographic databases:
Document Type: Article
UDC: 512.57
Language: Russian
Citation: A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “Structure of quasivariety lattices. III. Finitely partitionable bases”, Algebra Logika, 59:3 (2020), 323–333; Algebra and Logic, 59:3 (2020), 222–229
Citation in format AMSBIB
\Bibitem{KraNurSch20}
\by A.~V.~Kravchenko, A.~M.~Nurakunov, M.~V.~Schwidefsky
\paper Structure of quasivariety lattices. III. Finitely partitionable bases
\jour Algebra Logika
\yr 2020
\vol 59
\issue 3
\pages 323--333
\mathnet{http://mi.mathnet.ru/al2617}
\crossref{https://doi.org/10.33048/alglog.2020.59.303}
\transl
\jour Algebra and Logic
\yr 2020
\vol 59
\issue 3
\pages 222--229
\crossref{https://doi.org/10.1007/s10469-020-09594-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000585009100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094651068}
Linking options:
  • https://www.mathnet.ru/eng/al2617
  • https://www.mathnet.ru/eng/al/v59/i3/p323
    Cycle of papers
    This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:251
    Full-text PDF :28
    References:26
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024