Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2020, Volume 59, Number 3, Pages 315–322
DOI: https://doi.org/10.33048/alglog.2020.59.302
(Mi al2616)
 

This article is cited in 2 scientific papers (total in 2 papers)

Primary cosets in groups

A. Kh. Zhurtova, D. V. Lytkinabcd, V. D. Mazurovd

a Kabardino-Balkar State University, Nal'chik
b Novosibirsk State University
c Siberian State University of Telecommunications and Informatics, Novosibirsk
d Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (204 kB) Citations (2)
References:
Abstract: A finite group $G$ is called a generalized Frobenius group with kernel $F$ if $F$ is a proper nontrivial normal subgroup of $G$, and for every element $Fx$ of prime order $p$ in the quotient group $G/F$, the coset $Fx$ of $G$ consists of $p$-elements. We study generalized Frobenius groups with an insoluble kernel $F$. It is proved that $F$ has a unique non-Abelian composition factor, and that this factor is isomorphic to $L_2(3^{2^l})$ for some natural number $l$. Moreover, we look at a (not necessarily finite) group generated by a coset of some subgroup consisting solely of elements of order three. It is shown that such a group contains a nilpotent normal subgroup of index three.
Keywords: generalized Frobenius group, projective special linear group, insoluble group, coset.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00507
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1613
Siberian Branch of Russian Academy of Sciences I.1.1., проект № 0314-2019-001
A. Kh. Zhurtov is Supported by RFBR, project No. 19-01-00507. D. V. Lytkina is Supported by Mathematical Center in Akademgorodok, Agreement with RF Ministry of Education and Science No. 075-15-2019-1613. V. D. Mazurov is Supported by SB RAS Fundamental Research Program I.1.1, project No. 0314-2019-001.
Received: 21.02.2020
Revised: 21.10.2020
English version:
Algebra and Logic, 2020, Volume 59, Issue 3, Pages 216–221
DOI: https://doi.org/10.1007/s10469-020-09593-w
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. Kh. Zhurtov, D. V. Lytkina, V. D. Mazurov, “Primary cosets in groups”, Algebra Logika, 59:3 (2020), 315–322; Algebra and Logic, 59:3 (2020), 216–221
Citation in format AMSBIB
\Bibitem{ZhuLytMaz20}
\by A.~Kh.~Zhurtov, D.~V.~Lytkina, V.~D.~Mazurov
\paper Primary cosets in groups
\jour Algebra Logika
\yr 2020
\vol 59
\issue 3
\pages 315--322
\mathnet{http://mi.mathnet.ru/al2616}
\crossref{https://doi.org/10.33048/alglog.2020.59.302}
\transl
\jour Algebra and Logic
\yr 2020
\vol 59
\issue 3
\pages 216--221
\crossref{https://doi.org/10.1007/s10469-020-09593-w}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000585009100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094682730}
Linking options:
  • https://www.mathnet.ru/eng/al2616
  • https://www.mathnet.ru/eng/al/v59/i3/p315
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :38
    References:43
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024