Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2003, Volume 42, Number 2, Pages 211–226 (Mi al26)  

This article is cited in 12 scientific papers (total in 12 papers)

Initial Segments in Rogers Semilattices of $\Sigma^0_n$-Computable Numberings

S. Yu. Podzorov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: S. Goncharov and S. Badaev showed that for $n\geqslant 2$, there exist infinite families whose Rogers semilattices contain ideals without minimal elements. In this connection, the question was posed as to whether there are examples of families that lack this property. We answer this question in the negative. It is proved that independently of a family chosen, the class of semilattices that are principal ideals of the Rogers semilattice of that family is rather wide: it includes both a factor lattice of the lattice of recursively enumerable sets modulo finite sets and a family of initial segments in the semilattice of $m$-degrees generated by immune sets.
Keywords: Rogers semilattice, recursively enumerable set, immune set, $m$-degree.
Received: 19.03.2001
English version:
Algebra and Logic, 2003, Volume 42, Issue 2, Pages 121–129
DOI: https://doi.org/10.1023/A:1023354407888
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: S. Yu. Podzorov, “Initial Segments in Rogers Semilattices of $\Sigma^0_n$-Computable Numberings”, Algebra Logika, 42:2 (2003), 211–226; Algebra and Logic, 42:2 (2003), 121–129
Citation in format AMSBIB
\Bibitem{Pod03}
\by S.~Yu.~Podzorov
\paper Initial Segments in Rogers Semilattices of $\Sigma^0_n$-Computable Numberings
\jour Algebra Logika
\yr 2003
\vol 42
\issue 2
\pages 211--226
\mathnet{http://mi.mathnet.ru/al26}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2003630}
\zmath{https://zbmath.org/?q=an:1029.03033}
\transl
\jour Algebra and Logic
\yr 2003
\vol 42
\issue 2
\pages 121--129
\crossref{https://doi.org/10.1023/A:1023354407888}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42349108044}
Linking options:
  • https://www.mathnet.ru/eng/al26
  • https://www.mathnet.ru/eng/al/v42/i2/p211
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :145
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024