Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2000, Volume 39, Number 6, Pages 741–750 (Mi al251)  

This article is cited in 2 scientific papers (total in 2 papers)

The intrinsic enumerability of linear orders

A. N. Khisamiev
Full-text PDF (967 kB) Citations (2)
Abstract: We study into the question of which linearly ordered sets are intrinsically enumerable. In particular, it is proved that every countable ordinal lacks this property. To do this, we state a criterion for hereditarily finite admissible sets being existentially equivalent, which is interesting in its own right. Previously, Yu. L. Ershov presented the criterion for elements $h_0$, $h_1$ in $HF(\mathfrak M)$ to realize a same type as applied to suficiently saturated models $\mathfrak M$. Incidentally, that criterion fits with every model $\mathfrak M$ on the condition that we limit ourselves to 1-types.
Received: 02.04.1999
English version:
Algebra and Logic, 2000, Volume 39, Issue 6, Pages 423–428
DOI: https://doi.org/10.1023/A:1010278804302
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: A. N. Khisamiev, “The intrinsic enumerability of linear orders”, Algebra Logika, 39:6 (2000), 741–750; Algebra and Logic, 39:6 (2000), 423–428
Citation in format AMSBIB
\Bibitem{Khi00}
\by A.~N.~Khisamiev
\paper The intrinsic enumerability of linear orders
\jour Algebra Logika
\yr 2000
\vol 39
\issue 6
\pages 741--750
\mathnet{http://mi.mathnet.ru/al251}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1819770}
\zmath{https://zbmath.org/?q=an:0965.03049}
\transl
\jour Algebra and Logic
\yr 2000
\vol 39
\issue 6
\pages 423--428
\crossref{https://doi.org/10.1023/A:1010278804302}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3843068995}
Linking options:
  • https://www.mathnet.ru/eng/al251
  • https://www.mathnet.ru/eng/al/v39/i6/p741
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025