Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2000, Volume 39, Number 6, Pages 720–740 (Mi al250)  

DescrIbing a basis in semireduced form for inference rules of intuitionistic logic

V. V. Rybakova, M. Terziler, V. V. Rimatskiia

a Krasnoyarsk State University
Abstract: It is shown that a set of all rules in semireduced form whose premises satisfy a collection of specific conditions form a basis for all rules admissible in IPC. The conditions specified are quite natural, and many of them show up as properties of maximal theories in the canonical Kripke model for IPC. Besides, a similar basis is constructed for rules admissible in the superintuitionistic logic KC, a logic of the weak law of the excluded middle.
Received: 09.06.1998
English version:
Algebra and Logic, 2000, Volume 39, Issue 6, Pages 412–422
DOI: https://doi.org/10.1023/A:1010226820231
Bibliographic databases:
UDC: 510.64
Language: Russian
Citation: V. V. Rybakov, M. Terziler, V. V. Rimatskii, “DescrIbing a basis in semireduced form for inference rules of intuitionistic logic”, Algebra Logika, 39:6 (2000), 720–740; Algebra and Logic, 39:6 (2000), 412–422
Citation in format AMSBIB
\Bibitem{RybTerRim00}
\by V.~V.~Rybakov, M.~Terziler, V.~V.~Rimatskii
\paper DescrIbing a~basis in semireduced form for inference rules of intuitionistic logic
\jour Algebra Logika
\yr 2000
\vol 39
\issue 6
\pages 720--740
\mathnet{http://mi.mathnet.ru/al250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1819769}
\zmath{https://zbmath.org/?q=an:0973.03009}
\transl
\jour Algebra and Logic
\yr 2000
\vol 39
\issue 6
\pages 412--422
\crossref{https://doi.org/10.1023/A:1010226820231}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52849133080}
Linking options:
  • https://www.mathnet.ru/eng/al250
  • https://www.mathnet.ru/eng/al/v39/i6/p720
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :109
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024