Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2000, Volume 39, Number 6, Pages 711–719 (Mi al249)  

This article is cited in 3 scientific papers (total in 3 papers)

Definability of boolean algebras in $\mathbb{HF}$-superstrustures

A. V. Romina

Novosibirsk State University
Full-text PDF (955 kB) Citations (3)
Abstract: Within the frames of the $\Sigma$-definability approach propounded by Yu. L. Ershov, we study into the definability of Boolean algebras and their Frechet ranks in hereditarily finite superstructures. Examples are constructed of a superatomic Boolean algebra whose Frechet rank is not $\Sigma$-definable in the hereditarily finite superstructure over that algebra, and of an admissible set in which the atomless Boolean algebra is not autostable.
Received: 05.05.1999
Revised: 08.06.1999
English version:
Algebra and Logic, 2000, Volume 39, Issue 6, Pages 407–411
DOI: https://doi.org/10.1023/A:1010274703393
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: A. V. Romina, “Definability of boolean algebras in $\mathbb{HF}$-superstrustures”, Algebra Logika, 39:6 (2000), 711–719; Algebra and Logic, 39:6 (2000), 407–411
Citation in format AMSBIB
\Bibitem{Rom00}
\by A.~V.~Romina
\paper Definability of boolean algebras in $\mathbb{HF}$-superstrustures
\jour Algebra Logika
\yr 2000
\vol 39
\issue 6
\pages 711--719
\mathnet{http://mi.mathnet.ru/al249}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1819768}
\zmath{https://zbmath.org/?q=an:0965.03048}
\transl
\jour Algebra and Logic
\yr 2000
\vol 39
\issue 6
\pages 407--411
\crossref{https://doi.org/10.1023/A:1010274703393}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52849084138}
Linking options:
  • https://www.mathnet.ru/eng/al249
  • https://www.mathnet.ru/eng/al/v39/i6/p711
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :111
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024