Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2000, Volume 39, Number 6, Pages 693–710 (Mi al248)  

This article is cited in 1 scientific paper (total in 1 paper)

The boundary equivalence for rings and matrix rings over them

Yu. V. Nagrebetskaya
Abstract: We study into the question of whether some rings and their associated matrix rings have equal decidability boundaries in the scheme and scheme-alternative hierarchies. Let $\mathcal B_H (A;\sigma)$ be a decidability boundary for an algebraic system $\langle A;\sigma\rangle$ w. r. t. the hierarchy $H$. For a ring $R$ denote by $\underline M_n(R)$ an algebra with universe $\bigcup_{1\leqslant k,l\leqslant n}R^{k\times l}$ On this algebra, define the operations $+$ and $\cdot$ such a way as to extend, if necessary, the initial matrices by suitably many zero rows and columns added to the underside and to the right of each matrix, followed by “ordinary” addition and multiplication of the matrices obtained. The main results are collected in Theorems 1–3.
Theorem 1 holds that if $R$ is a division or an integral ring, and $R$ has zero or odd characteristic, then the equalities $\mathcal B_S(R;+,\,\cdot\,)=\mathcal B_S(R^{n\times n};+,\,\cdot\,)$ and $\mathcal B_S(R;+,\,\cdot\,,1)=\mathcal B_S (R^{n\times n};+,\,\cdot\,,1)$ hold for any $n>1$. And if $R$ is an arbitrary associative ring with identity then $\mathcal B_S(R;+,\,\cdot\,,1)=\mathcal B_S(R^{n\times n};\sigma_0\cup\{e_{i j}\})$ for any $n\geqslant1$ and $i,j\in\{1,\dots,n\}$, where $e_{ij}$ is a matrix identity.
Theorem 2 maintains that if $R$ is an associative ring with identity then $\mathcal B_S(\underline M_n(R))=\mathcal B_S(R;+,\,\cdot\,)$.
Theorem 3 proves that $\mathcal B_{SA}(\underline M_n(\mathbb Z))=\{\forall\neg\vee,\exists\neg\wedge,\forall\exists,\exists\forall\}$ for any $n\geqslant1$.
Received: 17.11.1998
Revised: 10.11.1999
English version:
Algebra and Logic, 2000, Volume 39, Issue 6, Pages 396–406
DOI: https://doi.org/10.1023/A:1010222719323
Bibliographic databases:
UDC: 510.53:512.55
Language: Russian
Citation: Yu. V. Nagrebetskaya, “The boundary equivalence for rings and matrix rings over them”, Algebra Logika, 39:6 (2000), 693–710; Algebra and Logic, 39:6 (2000), 396–406
Citation in format AMSBIB
\Bibitem{Nag00}
\by Yu.~V.~Nagrebetskaya
\paper The boundary equivalence for rings and matrix rings over them
\jour Algebra Logika
\yr 2000
\vol 39
\issue 6
\pages 693--710
\mathnet{http://mi.mathnet.ru/al248}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1819767}
\zmath{https://zbmath.org/?q=an:0974.03009}
\transl
\jour Algebra and Logic
\yr 2000
\vol 39
\issue 6
\pages 396--406
\crossref{https://doi.org/10.1023/A:1010222719323}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27844478689}
Linking options:
  • https://www.mathnet.ru/eng/al248
  • https://www.mathnet.ru/eng/al/v39/i6/p693
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025