Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 6, Pages 698–715 (Mi al243)  

This article is cited in 13 scientific papers (total in 13 papers)

Totally Transitive Torsion-Free Groups of Finite $p$-Rank

A. R. Chekhlov
Abstract: Totally transitive torsion-free groups all non-zero endomorphisms of which are monomorphisms are studied. Such are characterized in terms of modules over some rings with specific properties. Also, a structural description is provided for quasihomogeneous, totally transitive, torsion-free groups $A$ of finite $p$-rank, for at least one prime $p$ not dividing $A$.
Keywords: totally transitive torsion-free group, quasihomogeneous totally transitive group, endomorphism, monomorphism.
Received: 21.04.1999
Revised: 20.07.2001
English version:
Algebra and Logic, 2001, Volume 40, Issue 6, Pages 391–400
DOI: https://doi.org/10.1023/A:1013755809961
Bibliographic databases:
UDC: 512.541
Language: Russian
Citation: A. R. Chekhlov, “Totally Transitive Torsion-Free Groups of Finite $p$-Rank”, Algebra Logika, 40:6 (2001), 698–715; Algebra and Logic, 40:6 (2001), 391–400
Citation in format AMSBIB
\Bibitem{Che01}
\by A.~R.~Chekhlov
\paper Totally Transitive Torsion-Free Groups of Finite $p$-Rank
\jour Algebra Logika
\yr 2001
\vol 40
\issue 6
\pages 698--715
\mathnet{http://mi.mathnet.ru/al243}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918526}
\zmath{https://zbmath.org/?q=an:1017.20046}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 6
\pages 391--400
\crossref{https://doi.org/10.1023/A:1013755809961}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52549088626}
Linking options:
  • https://www.mathnet.ru/eng/al243
  • https://www.mathnet.ru/eng/al/v40/i6/p698
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :87
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024