Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 6, Pages 651–674 (Mi al240)  

This article is cited in 3 scientific papers (total in 3 papers)

Invariant Lie Algebras and Lie Algebras with a Small Centroid

K. N. Ponomarev
Abstract: A subalgebra of a Lie algebra is said to be invariant if it is invariant under the action of some Cartan subalgebra of that algebra. A known theorem of Melville says that a nilpotent invariant subalgebra of a finite-dimensional semisimple complex Lie algebra has a small centroid. The notion of a Lie algebra with small centroid extends to a class of all finite-dimensional algebras. For finite-dimensional algebras of zero characteristic with semisimple derivations in a sufficiently broad class, their centroid is proved small. As a consequence, it turns out that every invariant subalgebra of a finite-dimensional reductive Lie algebra over an arbitrary definition field of zero characteristic has a small centroid.
Keywords: Lie algebra, finite-dimensional Lie algebra, reductive Lie algebra, invariant subalgebra, Cartan subalgebra, nilpotent algebra, centroid.
Received: 27.03.2000
English version:
Algebra and Logic, 2001, Volume 40, Issue 6, Pages 365–377
DOI: https://doi.org/10.1023/A:1013799524982
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: K. N. Ponomarev, “Invariant Lie Algebras and Lie Algebras with a Small Centroid”, Algebra Logika, 40:6 (2001), 651–674; Algebra and Logic, 40:6 (2001), 365–377
Citation in format AMSBIB
\Bibitem{Pon01}
\by K.~N.~Ponomarev
\paper Invariant Lie Algebras and Lie Algebras with a~Small Centroid
\jour Algebra Logika
\yr 2001
\vol 40
\issue 6
\pages 651--674
\mathnet{http://mi.mathnet.ru/al240}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918523}
\zmath{https://zbmath.org/?q=an:1033.17014}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 6
\pages 365--377
\crossref{https://doi.org/10.1023/A:1013799524982}
Linking options:
  • https://www.mathnet.ru/eng/al240
  • https://www.mathnet.ru/eng/al/v40/i6/p651
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:332
    Full-text PDF :143
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024