Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 5, Pages 593–618 (Mi al238)  

This article is cited in 1 scientific paper (total in 1 paper)

Residual Finiteness for Admissible Inference Rules

V. V. Rybakova, V. R. Kiyatkina, T. Onerb

a Krasnoyarsk State University
b Ege University
Abstract: We look into methods which make it possible to determine whether or not the modal logics under examination are residually finite w. r. t. admissible inference rules. A general condition is specified which states that modal logics over $K4$ are not residually finite w.ṙ.ṫ. admissibility. It is shown that all modal logics $\lambda$ over $K4$ of width strictly more than 2 which have the co-covering property fail to be residually finite w. r. t. admissible inference rules; in particular, such are $K4$, $GL$, $K4.1$, $K4.2$, $S4.1$, $S4.2$, and $GL.2$. It is proved that all logics $\lambda$ over $S4$ of width at most 2, which are not sublogics of three special table logics, possess the property of being residually finite w. r. t. admissibility. A number of open questions are set up.
Keywords: modal logic, residual finiteness for admissible inference rules.
Received: 06.07.1998
English version:
Algebra and Logic, 2001, Volume 40, Issue 5, Pages 334–347
DOI: https://doi.org/10.1023/A:1012557903153
Bibliographic databases:
UDC: 510.64
Language: Russian
Citation: V. V. Rybakov, V. R. Kiyatkin, T. Oner, “Residual Finiteness for Admissible Inference Rules”, Algebra Logika, 40:5 (2001), 593–618; Algebra and Logic, 40:5 (2001), 334–347
Citation in format AMSBIB
\Bibitem{RybKiyOne01}
\by V.~V.~Rybakov, V.~R.~Kiyatkin, T.~Oner
\paper Residual Finiteness for Admissible Inference Rules
\jour Algebra Logika
\yr 2001
\vol 40
\issue 5
\pages 593--618
\mathnet{http://mi.mathnet.ru/al238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1917534}
\zmath{https://zbmath.org/?q=an:0989.03015}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 5
\pages 334--347
\crossref{https://doi.org/10.1023/A:1012557903153}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52549084068}
Linking options:
  • https://www.mathnet.ru/eng/al238
  • https://www.mathnet.ru/eng/al/v40/i5/p593
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024