Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 5, Pages 561–579 (Mi al236)  

This article is cited in 5 scientific papers (total in 5 papers)

Universal Numbering for Constructive $I$-Algebras

N. T. Kogabaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: Constructive Boolean algebras with distinguished ideals (we call them $I$-algebras in what follows) are studied. It is proved that a class of all constructive $I$-algebras is strongly computable, that is, the class of constructive $I$-algebras contains a principal computable numbering.
Keywords: constructive Boolean algebras with distinguished ideals, principal computable numbering.
Received: 24.11.1999
English version:
Algebra and Logic, 2001, Volume 40, Issue 5, Pages 315–326
DOI: https://doi.org/10.1023/A:1012553802244
Bibliographic databases:
UDC: 510.5+512.563
Language: Russian
Citation: N. T. Kogabaev, “Universal Numbering for Constructive $I$-Algebras”, Algebra Logika, 40:5 (2001), 561–579; Algebra and Logic, 40:5 (2001), 315–326
Citation in format AMSBIB
\Bibitem{Kog01}
\by N.~T.~Kogabaev
\paper Universal Numbering for Constructive $I$-Algebras
\jour Algebra Logika
\yr 2001
\vol 40
\issue 5
\pages 561--579
\mathnet{http://mi.mathnet.ru/al236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1917532}
\zmath{https://zbmath.org/?q=an:0989.03041}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 5
\pages 315--326
\crossref{https://doi.org/10.1023/A:1012553802244}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645283415}
Linking options:
  • https://www.mathnet.ru/eng/al236
  • https://www.mathnet.ru/eng/al/v40/i5/p561
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :115
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024