Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 4, Pages 484–499 (Mi al232)  

This article is cited in 5 scientific papers (total in 5 papers)

Quasiresolvent Models and $B$-Models

A. N. Khisamiev
Abstract: Relations among classes of resolvent, quasiresolvent, intrinsically enumerable models, and $B$-models are established. It is proved that every linear order containing a $\Delta$-subset isomorphic to $\omega$ or to $\omega^-$ is not quasiresolvent. It is stated that every model of a countably categorical theory is a $B$-model. And it is shown that for every $B$-model in a hereditarily finite admissible set, the uniformization theorem fails.
Keywords: resolvent model, quasiresolvent model, intrinsically enumerable model, $B$-model, countably categorical theory, hereditarily finite admissible set, the uniformization theorem.
Received: 12.12.1999
English version:
Algebra and Logic, 2001, Volume 40, Issue 4, Pages 272–280
DOI: https://doi.org/10.1023/A:1012346704079
Bibliographic databases:
UDC: 510.5+510.68
Language: Russian
Citation: A. N. Khisamiev, “Quasiresolvent Models and $B$-Models”, Algebra Logika, 40:4 (2001), 484–499; Algebra and Logic, 40:4 (2001), 272–280
Citation in format AMSBIB
\Bibitem{Khi01}
\by A.~N.~Khisamiev
\paper Quasiresolvent Models and $B$-Models
\jour Algebra Logika
\yr 2001
\vol 40
\issue 4
\pages 484--499
\mathnet{http://mi.mathnet.ru/al232}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1867928}
\zmath{https://zbmath.org/?q=an:0989.03033}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 4
\pages 272--280
\crossref{https://doi.org/10.1023/A:1012346704079}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36749023592}
Linking options:
  • https://www.mathnet.ru/eng/al232
  • https://www.mathnet.ru/eng/al/v40/i4/p484
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :95
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024