Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 4, Pages 415–429 (Mi al229)  

Lattice Fully Orderable Groups

N. Ya. Medvedev
Abstract: Let $\Omega$ be a linearly ordered set, $A(\Omega)$ be the group of all order automorphisms of $\Omega$, and $L(\Omega)$ be a normal subgroup of $A(\Omega)$ consisting of all automorphisms whose support is bounded above. We argue to show that, for every linearly ordered set $\Omega$ such that: (1) $A(\Omega)$ is an $o$-2-transitive group, and (2) $\Omega$ contains a countable unbounded sequence of elements, the simple group $A(\Omega)/L(\Omega)$ has exactly two maximal and two minimal non-trivial (mutually inverse) partial orders, and that every partial order of $A(\Omega)/L(\Omega)$ extends to a lattice one. It is proved that every lattice-orderable group is isomorphically embeddable in a simple lattice fully orderable group. We also state that some quotient groups of Dlab groups of the real line and unit interval are lattice fully orderable.
Keywords: lattice-orderable group, lattice-orderable group, Dlab group of the real line.
Received: 07.02.2000
Revised: 03.05.2000
English version:
Algebra and Logic, 2001, Volume 40, Issue 4, Pages 231–238
DOI: https://doi.org/10.1023/A:1012390519100
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: N. Ya. Medvedev, “Lattice Fully Orderable Groups”, Algebra Logika, 40:4 (2001), 415–429; Algebra and Logic, 40:4 (2001), 231–238
Citation in format AMSBIB
\Bibitem{Med01}
\by N.~Ya.~Medvedev
\paper Lattice Fully Orderable Groups
\jour Algebra Logika
\yr 2001
\vol 40
\issue 4
\pages 415--429
\mathnet{http://mi.mathnet.ru/al229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1867925}
\zmath{https://zbmath.org/?q=an:1002.06013}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 4
\pages 231--238
\crossref{https://doi.org/10.1023/A:1012390519100}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52549101716}
Linking options:
  • https://www.mathnet.ru/eng/al229
  • https://www.mathnet.ru/eng/al/v40/i4/p415
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:165
    Full-text PDF :66
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024