Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 4, Pages 396–414 (Mi al228)  

This article is cited in 8 scientific papers (total in 8 papers)

Different Definitions of Algebraically Closed Skew Fields

P. S. Kolesnikov
Abstract: We consider an algebraically closed (in the sense of solvability of arbitrary polynomial equations) skew field constructed by Makar – Limanov. It is shown that every generalized polynomial equation with more than one homogeneous component has a non-zero solution. We also look into P. Cohn's approach to defining algebraically closed non-commutative skew fields and treat some related problems.
Keywords: algebraically closed skew field, polynomial equation.
Received: 01.11.1999
English version:
Algebra and Logic, 2001, Volume 40, Issue 4, Pages 219–230
DOI: https://doi.org/10.1023/A:1012338502261
Bibliographic databases:
UDC: 512.552.32
Language: Russian
Citation: P. S. Kolesnikov, “Different Definitions of Algebraically Closed Skew Fields”, Algebra Logika, 40:4 (2001), 396–414; Algebra and Logic, 40:4 (2001), 219–230
Citation in format AMSBIB
\Bibitem{Kol01}
\by P.~S.~Kolesnikov
\paper Different Definitions of Algebraically Closed Skew Fields
\jour Algebra Logika
\yr 2001
\vol 40
\issue 4
\pages 396--414
\mathnet{http://mi.mathnet.ru/al228}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1867924}
\zmath{https://zbmath.org/?q=an:1016.16010}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 4
\pages 219--230
\crossref{https://doi.org/10.1023/A:1012338502261}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52549104020}
Linking options:
  • https://www.mathnet.ru/eng/al228
  • https://www.mathnet.ru/eng/al/v40/i4/p396
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :120
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024