Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 3, Pages 352–369 (Mi al226)  

This article is cited in 1 scientific paper (total in 1 paper)

The Embedding Theorem for Cantor Varieties

L. V. Shabunin
Abstract: Let $m$ and $n$ be fixed integers, with $1\leqslant m<n$. A Cantor variety $C_{m,n}$ is a variety of algebras with $m$ $n$-ary and $n$ $m$-ary basic operations which is defined in a signature $\Omega=\{g_1,\dots,g_m,f_1,\dots,f_n\}$ by the identities
\begin{gather*} f_i(g_1(x_1,\dots,x_n),\dots,g_m(x_1,\dots,x_n))=x_i, \qquad i=1,\dots,n, \\ g_j(f_1(x_1,\dots,x_m),\dots,f_n(x_1,\dots,x_m))=x_j, \qquad j=1,\dots,m. \end{gather*}
We prove the following: (a) every partial $C_{m,n}$-algebra $A$ is isomorphically embeddable in the algebra $G=\langle A; S(A)\rangle$ of $C_{m,n}$; (b) for every finitely presented algebra $G=\langle A; S\rangle$ in $C_{m,n}$, the word problem is decidable; (c) for finitely presented algebras in $C_{m,n}$, the occurrence problem is decidable; (d) $C_{m,n}$ has a hereditarily undecidable elementary theory.
Keywords: Cantor variety, the word problem, the occurrence problem, elementary theory.
Received: 10.10.1999
English version:
Algebra and Logic, 2001, Volume 40, Issue 3, Pages 194–204
DOI: https://doi.org/10.1023/A:1010268503853
Bibliographic databases:
UDC: 510.6
Language: Russian
Citation: L. V. Shabunin, “The Embedding Theorem for Cantor Varieties”, Algebra Logika, 40:3 (2001), 352–369; Algebra and Logic, 40:3 (2001), 194–204
Citation in format AMSBIB
\Bibitem{Sha01}
\by L.~V.~Shabunin
\paper The Embedding Theorem for Cantor Varieties
\jour Algebra Logika
\yr 2001
\vol 40
\issue 3
\pages 352--369
\mathnet{http://mi.mathnet.ru/al226}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1857889}
\zmath{https://zbmath.org/?q=an:0989.03031}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 3
\pages 194--204
\crossref{https://doi.org/10.1023/A:1010268503853}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52549124165}
Linking options:
  • https://www.mathnet.ru/eng/al226
  • https://www.mathnet.ru/eng/al/v40/i3/p352
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :134
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024