Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 3, Pages 309–329 (Mi al223)  

This article is cited in 19 scientific papers (total in 19 papers)

$n$-Ary Mal'tsev Algebras

A. P. Pozhidaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: By analogy with $n$-Lie algebras, which are a natural generalization of Lie algebras to the case of $n$-ary multiplication, we define the concept of an $n$-ary Mal'tsev algerba. It is shown that exceptional algebras of a vector cross product are ternary central simple Mal'tsev algebras, which are not 3-Lie algebras if the characteristic of a ground field is distinct from 2 and 3. The basic result is that every $n$-ary algebra of the vector cross product is an $n$-ary central simple Mal'tsev algebra.
Keywords: $n$-ary Mal'tsev algebra.
Received: 04.02.2000
English version:
Algebra and Logic, 2001, Volume 40, Issue 3, Pages 170–182
DOI: https://doi.org/10.1023/A:1010212318874
Bibliographic databases:
UDC: 512.554
Language: Russian
Citation: A. P. Pozhidaev, “$n$-Ary Mal'tsev Algebras”, Algebra Logika, 40:3 (2001), 309–329; Algebra and Logic, 40:3 (2001), 170–182
Citation in format AMSBIB
\Bibitem{Poz01}
\by A.~P.~Pozhidaev
\paper $n$-Ary Mal'tsev Algebras
\jour Algebra Logika
\yr 2001
\vol 40
\issue 3
\pages 309--329
\mathnet{http://mi.mathnet.ru/al223}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1857886}
\zmath{https://zbmath.org/?q=an:1010.17016}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 3
\pages 170--182
\crossref{https://doi.org/10.1023/A:1010212318874}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33244466884}
Linking options:
  • https://www.mathnet.ru/eng/al223
  • https://www.mathnet.ru/eng/al/v40/i3/p309
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :212
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024