Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 3, Pages 290–301 (Mi al221)  

This article is cited in 19 scientific papers (total in 19 papers)

Decidability of the Projective Beth Property in Varieties of Heyting Algebras

L. L. Maksimova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: Previously, we proved that there are only finitely many varieties of Heyting algebras possessing the projective Beth property and gave an exhaustive list of these. The projective Beth property is equivalent to strong epimorphisms surjectivity (SES). Here, we prove that the projective Beth property and SES are base-decidable on a class of varieties of Heyting algebras.
Keywords: variety of Heyting algebras, the projective Beth property, strong epimorphisms surjectivity.
Received: 15.12.1999
English version:
Algebra and Logic, 2001, Volume 40, Issue 3, Pages 159–165
DOI: https://doi.org/10.1023/A:1010208217965
Bibliographic databases:
UDC: 510.64
Language: Russian
Citation: L. L. Maksimova, “Decidability of the Projective Beth Property in Varieties of Heyting Algebras”, Algebra Logika, 40:3 (2001), 290–301; Algebra and Logic, 40:3 (2001), 159–165
Citation in format AMSBIB
\Bibitem{Mak01}
\by L.~L.~Maksimova
\paper Decidability of the Projective Beth Property in Varieties of Heyting Algebras
\jour Algebra Logika
\yr 2001
\vol 40
\issue 3
\pages 290--301
\mathnet{http://mi.mathnet.ru/al221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1857884}
\zmath{https://zbmath.org/?q=an:0989.03025}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 3
\pages 159--165
\crossref{https://doi.org/10.1023/A:1010208217965}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52549130503}
Linking options:
  • https://www.mathnet.ru/eng/al221
  • https://www.mathnet.ru/eng/al/v40/i3/p290
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :97
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024