Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 1, Pages 97–116 (Mi al211)  

This article is cited in 4 scientific papers (total in 4 papers)

Equational Theories for Classes of Finite Semigroups

V. Yu. Popov
Abstract: It is proved that there exists an infinite sequence of finitely based semigroup varieties $\mathfrak A_1\subset\mathfrak B_1\subset\mathfrak A_2\subset\mathfrak B_2\subset\dotsb$ such that, for all $i$, an equational theory for $\mathfrak A_i$ and for the class $\mathfrak A_i\cap\mathfrak F$ of all finite semigroups in $\mathfrak A_i$ is undecidable while an equational theory for $\mathfrak B_i$ and for the class $\mathfrak B_i\cap\mathfrak F$ of all finite semigroups in $\mathfrak B_i$ is decidable. An infinite sequence of finitely based semigroup varieties $\mathfrak A_1\supset\mathfrak B_1\supset\mathfrak A_2\supset\mathfrak B_2\supset\dotsb$ is constructed so that, for all $i$, an equational theory for $\mathfrak B_i$ and for the class $\mathfrak B_i\cap\mathfrak F$ of all finite semigroups in $\mathfrak B_i$ is decidable whicle an equational theory for $\mathfrak A_i$ and for the class $\mathfrak A_i\cap\mathfrak F$ of all finite semigroups in $\mathfrak A_i$ is not.
Received: 05.06.1999
English version:
Algebra and Logic, 2001, Volume 40, Issue 1, Pages 55–66
DOI: https://doi.org/10.1023/A:1002806322998
Bibliographic databases:
UDC: 512.54.0:512.57
Language: Russian
Citation: V. Yu. Popov, “Equational Theories for Classes of Finite Semigroups”, Algebra Logika, 40:1 (2001), 97–116; Algebra and Logic, 40:1 (2001), 55–66
Citation in format AMSBIB
\Bibitem{Pop01}
\by V.~Yu.~Popov
\paper Equational Theories for Classes of Finite Semigroups
\jour Algebra Logika
\yr 2001
\vol 40
\issue 1
\pages 97--116
\mathnet{http://mi.mathnet.ru/al211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1853351}
\zmath{https://zbmath.org/?q=an:0966.08006}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 1
\pages 55--66
\crossref{https://doi.org/10.1023/A:1002806322998}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52549124676}
Linking options:
  • https://www.mathnet.ru/eng/al211
  • https://www.mathnet.ru/eng/al/v40/i1/p97
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024