Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2001, Volume 40, Number 1, Pages 30–59 (Mi al208)  

This article is cited in 2 scientific papers (total in 2 papers)

The Automorphic Conjugacy Problem for Subgroups of Fundamental Groups of Compact Surfaces

O. V. Bogopolskii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: Let $\Sigma$ be a compact connected surface with basepoint $x$ and $H_1$ and $H_2$ be two finitely generated subgroups of $\pi_1(\Sigma, x)$ on finite sets of generators. It is proved that there exists an algorithm which decides whether there is an automorphism $\alpha\in\operatorname{Aut}(\pi_1(\Sigma, x))$ for which $\alpha (H_1)=H_2$, and if so, it finds such.
Keywords: fundamental groups of compact surfaces, automorphic conjugacy problem for subgroups.
Received: 17.06.1999
English version:
Algebra and Logic, 2001, Volume 40, Issue 1, Pages 17–33
DOI: https://doi.org/10.1023/A:1002850105251
Bibliographic databases:
UDC: 512.544.43+512.54.05
Language: Russian
Citation: O. V. Bogopolskii, “The Automorphic Conjugacy Problem for Subgroups of Fundamental Groups of Compact Surfaces”, Algebra Logika, 40:1 (2001), 30–59; Algebra and Logic, 40:1 (2001), 17–33
Citation in format AMSBIB
\Bibitem{Bog01}
\by O.~V.~Bogopolskii
\paper The Automorphic Conjugacy Problem for Subgroups of Fundamental Groups of Compact Surfaces
\jour Algebra Logika
\yr 2001
\vol 40
\issue 1
\pages 30--59
\mathnet{http://mi.mathnet.ru/al208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1852788}
\zmath{https://zbmath.org/?q=an:0980.20025}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 1
\pages 17--33
\crossref{https://doi.org/10.1023/A:1002850105251}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141582786}
Linking options:
  • https://www.mathnet.ru/eng/al208
  • https://www.mathnet.ru/eng/al/v40/i1/p30
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :101
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024