Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2002, Volume 41, Number 3, Pages 371–382 (Mi al188)  

Indecomposable Representations of the Superalgebra $B(1,2)$

M. N. Trushina
References:
Abstract: Finite-dimensional indecomposable superbimodules over the superalgebra $B(1,2)$ are treated. We propound a method for constructing indecomposable alternative superbimodules over $B(1,2)$ containing a given socle (such can be presented by any irreducible module over $B(1,2)$). The method is based on adding on the Jordan basis. Also, for the characteristic 3 case, we give examples of Jordan indecomposable superbimodules which are not alternative.
Keywords: indecomposable superbimodule, Jordan superbimodule, alternative superbimodule.
Received: 09.08.2001
English version:
Algebra and Logic, 2002, Volume 41, Issue 3, Pages 207–213
DOI: https://doi.org/10.1023/A:1016081010006
Bibliographic databases:
UDC: 512.554
Language: Russian
Citation: M. N. Trushina, “Indecomposable Representations of the Superalgebra $B(1,2)$”, Algebra Logika, 41:3 (2002), 371–382; Algebra and Logic, 41:3 (2002), 207–213
Citation in format AMSBIB
\Bibitem{Tru02}
\by M.~N.~Trushina
\paper Indecomposable Representations of the Superalgebra $B(1,2)$
\jour Algebra Logika
\yr 2002
\vol 41
\issue 3
\pages 371--382
\mathnet{http://mi.mathnet.ru/al188}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1934541}
\zmath{https://zbmath.org/?q=an:1065.17016}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 3
\pages 207--213
\crossref{https://doi.org/10.1023/A:1016081010006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249090226}
Linking options:
  • https://www.mathnet.ru/eng/al188
  • https://www.mathnet.ru/eng/al/v41/i3/p371
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :74
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024