Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2002, Volume 41, Number 2, Pages 228–252 (Mi al182)  

This article is cited in 6 scientific papers (total in 6 papers)

$\Sigma$-Admissible Families over Linear Orders

A. I. Stukachev

Novosibirsk State University
References:
Abstract: Admissible sets of the form $\operatorname{HYP}(\mathfrak M)$, where $\mathfrak M$ is a recursively saturated system, are treated. We provide descriptions of subsets $\mathfrak M$, which are $\Sigma_*$-sets in $\operatorname{HYP}(\mathfrak M)$, and of families of subsets $\mathfrak M$, which form $\Sigma$-regular families in $\operatorname{HYP}(\mathfrak M)$, in terms of the concept of being fundamental couched in the article. Fundamental subsets and families are characterized for models of dense linear orderings.
Keywords: admissible sets, recursively saturated system, $\Sigma$-regular family, fundamental subset.
Received: 14.07.2000
English version:
Algebra and Logic, 2002, Volume 41, Issue 2, Pages 127–139
DOI: https://doi.org/10.1023/A:1015312831772
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: A. I. Stukachev, “$\Sigma$-Admissible Families over Linear Orders”, Algebra Logika, 41:2 (2002), 228–252; Algebra and Logic, 41:2 (2002), 127–139
Citation in format AMSBIB
\Bibitem{Stu02}
\by A.~I.~Stukachev
\paper $\Sigma$-Admissible Families over Linear Orders
\jour Algebra Logika
\yr 2002
\vol 41
\issue 2
\pages 228--252
\mathnet{http://mi.mathnet.ru/al182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1922991}
\zmath{https://zbmath.org/?q=an:1063.03031}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 2
\pages 127--139
\crossref{https://doi.org/10.1023/A:1015312831772}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42349097450}
Linking options:
  • https://www.mathnet.ru/eng/al182
  • https://www.mathnet.ru/eng/al/v41/i2/p228
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025