Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2002, Volume 41, Number 2, Pages 223–227 (Mi al181)  

This article is cited in 1 scientific paper (total in 1 paper)

Monoids All Polygons Over Which Are $\omega$-Stable: Proof of the Mustafin – Poizat Conjecture

A. A. Stepanova
Full-text PDF (464 kB) Citations (1)
References:
Abstract: A monoid $S$ is called an $\omega$-stabilizer (superstabilizer, or stabilizer) if every $S$-polygon has an $\omega$-stable (superstable, or stable) theory. It is proved that every $\omega$-stabilizer is a regular monoid. This confirms the Mustafin – Poizat conjecture and allows us to end up the description of $\omega$-stabilizers.
Keywords: monoid, regular monoid, $\omega$-stabilizer, $\omega$-stable theory.
Received: 29.10.2001
English version:
Algebra and Logic, 2002, Volume 41, Issue 2, Pages 124–126
DOI: https://doi.org/10.1023/A:1015360714934
Bibliographic databases:
UDC: 510.67:512.56
Language: Russian
Citation: A. A. Stepanova, “Monoids All Polygons Over Which Are $\omega$-Stable: Proof of the Mustafin – Poizat Conjecture”, Algebra Logika, 41:2 (2002), 223–227; Algebra and Logic, 41:2 (2002), 124–126
Citation in format AMSBIB
\Bibitem{Ste02}
\by A.~A.~Stepanova
\paper Monoids All Polygons Over Which Are $\omega$-Stable: Proof of the Mustafin~-- Poizat Conjecture
\jour Algebra Logika
\yr 2002
\vol 41
\issue 2
\pages 223--227
\mathnet{http://mi.mathnet.ru/al181}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1922990}
\zmath{https://zbmath.org/?q=an:1067.20082}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 2
\pages 124--126
\crossref{https://doi.org/10.1023/A:1015360714934}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42349102714}
Linking options:
  • https://www.mathnet.ru/eng/al181
  • https://www.mathnet.ru/eng/al/v41/i2/p223
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :128
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024