Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2002, Volume 41, Number 2, Pages 199–222 (Mi al180)  

This article is cited in 4 scientific papers (total in 4 papers)

Model Theory for Hereditarily Finite Superstructures

V. G. Puzarenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We study model-theoretic properties of hereditarily finite superstructures over models of not more than countable signatures. A question is answered in the negative inquiring whether theories of hereditarily finite superstructures which have a unique (up to isomorphism) hereditarily finite superstructure can be described via definable functions. Yet theories for such superstructures admit a description in terms of iterated families $\mathcal{TF}$ and $\mathcal{SF}$. These are constructed using a definable union taken over countable ordinals in the subsets which are unions of finitely many complete subsets and of finite subsets, respectively. Simultaneously, we describe theories that share a unique (up to isomorphism) countable hereditarily finite superstructure.
Keywords: hereditarily finite superstructures, $\omega$-logic.
Received: 28.07.2000
English version:
Algebra and Logic, 2002, Volume 41, Issue 2, Pages 111–123
DOI: https://doi.org/10.1023/A:1015308730864
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: V. G. Puzarenko, “Model Theory for Hereditarily Finite Superstructures”, Algebra Logika, 41:2 (2002), 199–222; Algebra and Logic, 41:2 (2002), 111–123
Citation in format AMSBIB
\Bibitem{Puz02}
\by V.~G.~Puzarenko
\paper Model Theory for Hereditarily Finite Superstructures
\jour Algebra Logika
\yr 2002
\vol 41
\issue 2
\pages 199--222
\mathnet{http://mi.mathnet.ru/al180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1922989}
\zmath{https://zbmath.org/?q=an:1063.03016}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 2
\pages 111--123
\crossref{https://doi.org/10.1023/A:1015308730864}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249084640}
Linking options:
  • https://www.mathnet.ru/eng/al180
  • https://www.mathnet.ru/eng/al/v41/i2/p199
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025