Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2002, Volume 41, Number 2, Pages 166–198 (Mi al179)  

This article is cited in 77 scientific papers (total in 77 papers)

Recognition of Finite Simple Groups $S_4(q)$ by Their Element Orders

V. D. Mazurov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: It is proved that among simple groups $S_4(q)$ in the class of finite groups, only the groups $S_4(3^n)$, where $n$ is an odd number greater than unity, are recognizable by a set of their element orders. It is also shown that simple groups $U_3(9)$, ${^3D}_4(2)$, $G_2(4)$, $S_6(3)$, $F_4(2)$, and ${^2E}_6(2)$ are recognizable, but $L_3(3)$ is not.
Keywords: finite simple groups, recognizability of groups by their element orders.
Received: 29.11.2000
English version:
Algebra and Logic, 2002, Volume 41, Issue 2, Pages 93–110
DOI: https://doi.org/10.1023/A:1015356614025
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: V. D. Mazurov, “Recognition of Finite Simple Groups $S_4(q)$ by Their Element Orders”, Algebra Logika, 41:2 (2002), 166–198; Algebra and Logic, 41:2 (2002), 93–110
Citation in format AMSBIB
\Bibitem{Maz02}
\by V.~D.~Mazurov
\paper Recognition of Finite Simple Groups~$S_4(q)$ by Their Element Orders
\jour Algebra Logika
\yr 2002
\vol 41
\issue 2
\pages 166--198
\mathnet{http://mi.mathnet.ru/al179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1922988}
\zmath{https://zbmath.org/?q=an:1067.20016}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 2
\pages 93--110
\crossref{https://doi.org/10.1023/A:1015356614025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1842462938}
Linking options:
  • https://www.mathnet.ru/eng/al179
  • https://www.mathnet.ru/eng/al/v41/i2/p166
  • This publication is cited in the following 77 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025