Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2002, Volume 41, Number 2, Pages 155–165 (Mi al178)  

This article is cited in 1 scientific paper (total in 1 paper)

Evaluating the Complexity of Index Sets for Families of General Recursive Functions in the Arithmetic Hierarchy

Yu. D. Korolkov
References:
Abstract: The complexity of index sets of families of general recursive functions is evaluated in the Kleene – Mostowski arithmetic hierarchy.
Keywords: general recursive function, computable family of general recursive functions, discrete family of general recursive functions, effectively discrete family of general recursive functions.
Received: 30.05.1999
English version:
Algebra and Logic, 2002, Volume 41, Issue 2, Pages 87–92
DOI: https://doi.org/10.1023/A:1015304629955
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: Yu. D. Korolkov, “Evaluating the Complexity of Index Sets for Families of General Recursive Functions in the Arithmetic Hierarchy”, Algebra Logika, 41:2 (2002), 155–165; Algebra and Logic, 41:2 (2002), 87–92
Citation in format AMSBIB
\Bibitem{Kor02}
\by Yu.~D.~Korolkov
\paper Evaluating the Complexity of Index Sets for Families of General Recursive Functions in the Arithmetic Hierarchy
\jour Algebra Logika
\yr 2002
\vol 41
\issue 2
\pages 155--165
\mathnet{http://mi.mathnet.ru/al178}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1922987}
\zmath{https://zbmath.org/?q=an:1063.03025}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 2
\pages 87--92
\crossref{https://doi.org/10.1023/A:1015304629955}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42349085205}
Linking options:
  • https://www.mathnet.ru/eng/al178
  • https://www.mathnet.ru/eng/al/v41/i2/p155
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :85
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024