|
This article is cited in 4 scientific papers (total in 4 papers)
Embedding the Outer Automorphism Group $\operatorname{Out}(F_n)$ of a Free Group of Rank $n$ in the Group $\operatorname{Out}(F_m)$ for $m>n$
O. V. Bogopolskii, D. V. Puga Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
It is proved that for every $n\geqslant1$, the group $\operatorname{Out}(F_n)$ is embedded in the group $\operatorname{Out}(F_m)$ with $m=1+(n-1)k^n$, where $k$ is an arbitrary natural number coprime to $n-1$.
Keywords:
group of outer automorphisms, free group.
Received: 09.01.2000
Citation:
O. V. Bogopolskii, D. V. Puga, “Embedding the Outer Automorphism Group $\operatorname{Out}(F_n)$ of a Free Group of Rank $n$ in the Group $\operatorname{Out}(F_m)$ for $m>n$”, Algebra Logika, 41:2 (2002), 123–129; Algebra and Logic, 41:2 (2002), 69–73
Linking options:
https://www.mathnet.ru/eng/al175 https://www.mathnet.ru/eng/al/v41/i2/p123
|
Statistics & downloads: |
Abstract page: | 285 | Full-text PDF : | 106 | References: | 47 | First page: | 1 |
|