Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2002, Volume 41, Number 1, Pages 70–82 (Mi al172)  

This article is cited in 5 scientific papers (total in 5 papers)

The Number of Isomorphism Classes of Finite Groups with Given Element Orders

H. Denga, M. S. Lucido, W. Shi

a Southwest China Normal University
References:
Abstract: Let $G$ be a finite group and $\pi_e(G)$ the set of element orders of $G$. Denote by $h(\pi_e(G))$ the number of isomorphism classes of finite groups $H$ satisfying $\pi_e(H)=\pi_e(G)$. We prove that if $G$ has at least three prime graph components, then $h(\pi_e(G))\in\{1, \infty\}$.
Keywords: finite group, set of element orders of a group, prime graph.
Received: 08.08.2000
Revised: 26.04.2000
English version:
Algebra and Logic, 2002, Volume 41, Issue 1, Pages 39–46
DOI: https://doi.org/10.1023/A:1014658001689
Bibliographic databases:
UDC: 519.542
Language: Russian
Citation: H. Deng, M. S. Lucido, W. Shi, “The Number of Isomorphism Classes of Finite Groups with Given Element Orders”, Algebra Logika, 41:1 (2002), 70–82; Algebra and Logic, 41:1 (2002), 39–46
Citation in format AMSBIB
\Bibitem{DenLucShi02}
\by H.~Deng, M.~S.~Lucido, W.~Shi
\paper The Number of Isomorphism Classes of Finite Groups with Given Element Orders
\jour Algebra Logika
\yr 2002
\vol 41
\issue 1
\pages 70--82
\mathnet{http://mi.mathnet.ru/al172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1924598}
\zmath{https://zbmath.org/?q=an:1016.20014}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 1
\pages 39--46
\crossref{https://doi.org/10.1023/A:1014658001689}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22744455520}
Linking options:
  • https://www.mathnet.ru/eng/al172
  • https://www.mathnet.ru/eng/al/v41/i1/p70
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:496
    Full-text PDF :139
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024