Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2006, Volume 45, Number 5, Pages 538–574 (Mi al159)  

This article is cited in 32 scientific papers (total in 32 papers)

Index sets of computable structures

W. Calverta, V. S. Harizanovab, J. F. Knightc, S. Millerc

a Murray State University
b George Washington University
c University of Notre Dame
References:
Abstract: The index set of a computable structure $\mathcal A$ is the set of indices for computable copies of $\mathcal A$. We determine complexity of the index sets of various mathematically interesting structures including different finite structures, $\mathbb Q$-vector spaces, Archimedean real-closed ordered fields, reduced Abelian $p$-groups of length less than $\omega^2$, and models of the original Ehrenfeucht theory. The index sets for these structures all turn out to be $m$-complete $\Pi_n^0$, $d-\Sigma_n^0$, or $\Sigma_n^0$ , for various $n$. In each case the calculation involves finding an optimal sentence (i.e., one of simplest form) that describes the structure. The form of the sentence (computable $\Pi_n$, $d-\Sigma_n$, or $\Sigma_n$) yields a bound on the complexity of the index set. Whenever we show $m$-completeness of the index set, we know that the sentence is optimal. For some structures, the first sentence that comes to mind is not optimal, and another sentence of simpler form is shown to serve the purpose. For some of the groups, this involves Ramsey's theory.
Keywords: index set, computable structure, vector space, Archimedean real-closed ordered field, reduced Abelian $p$-group, Ehrenfeucht theory.
Received: 11.01.2006
English version:
Algebra and Logic, 2006, Volume 45, Issue 5, Pages 306–325
DOI: https://doi.org/10.1007/s10469-006-0029-0
Bibliographic databases:
UDC: 510.53
Language: Russian
Citation: W. Calvert, V. S. Harizanova, J. F. Knight, S. Miller, “Index sets of computable structures”, Algebra Logika, 45:5 (2006), 538–574; Algebra and Logic, 45:5 (2006), 306–325
Citation in format AMSBIB
\Bibitem{CalHarKni06}
\by W.~Calvert, V.~S.~Harizanova, J.~F.~Knight, S.~Miller
\paper Index sets of computable structures
\jour Algebra Logika
\yr 2006
\vol 45
\issue 5
\pages 538--574
\mathnet{http://mi.mathnet.ru/al159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307694}
\zmath{https://zbmath.org/?q=an:1164.03325}
\transl
\jour Algebra and Logic
\yr 2006
\vol 45
\issue 5
\pages 306--325
\crossref{https://doi.org/10.1007/s10469-006-0029-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750708911}
Linking options:
  • https://www.mathnet.ru/eng/al159
  • https://www.mathnet.ru/eng/al/v45/i5/p538
  • This publication is cited in the following 32 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:545
    Full-text PDF :120
    References:38
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024