Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2006, Volume 45, Number 2, Pages 215–230 (Mi al143)  

This article is cited in 8 scientific papers (total in 8 papers)

Lattices Embeddable in Subsemigroup Lattices. I. Semilattices

M. V. Semenova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (197 kB) Citations (8)
References:
Abstract: V. B. Repnitskii showed that any lattice embeds in some subsemilattice lattice. In his proof, use was made of a result by D. Bredikhin and B. Schein, stating that any lattice embeds in the suborder lattice of a suitable partial order. We present a direct proof of Repnitskii's result, which is independent of Bredikhin–Schein's, giving the answer to a question posed by L. N. Shevrin and A. J. Ovsyannikov. We also show that a finite lattice is lower bounded iff it is isomorphic to the lattice of subsemilattices of a finite semilattice that are closed under a distributive quasiorder.
Keywords: lattice, subsemilattice lattice, lower bounded lattice, partial order.
Received: 05.10.2005
Revised: 02.02.2006
English version:
Algebra and Logic, 2006, Volume 45, Issue 2, Pages 124–133
DOI: https://doi.org/10.1007/s10469-006-0011-x
Bibliographic databases:
UDC: 512.56
Language: Russian
Citation: M. V. Semenova, “Lattices Embeddable in Subsemigroup Lattices. I. Semilattices”, Algebra Logika, 45:2 (2006), 215–230; Algebra and Logic, 45:2 (2006), 124–133
Citation in format AMSBIB
\Bibitem{Sem06}
\by M.~V.~Semenova
\paper Lattices Embeddable in Subsemigroup Lattices. I. Semilattices
\jour Algebra Logika
\yr 2006
\vol 45
\issue 2
\pages 215--230
\mathnet{http://mi.mathnet.ru/al143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2260332}
\zmath{https://zbmath.org/?q=an:1117.20044}
\transl
\jour Algebra and Logic
\yr 2006
\vol 45
\issue 2
\pages 124--133
\crossref{https://doi.org/10.1007/s10469-006-0011-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646479141}
Linking options:
  • https://www.mathnet.ru/eng/al143
  • https://www.mathnet.ru/eng/al/v45/i2/p215
    Cycle of papers
    This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:514
    Full-text PDF :137
    References:53
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024