Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2006, Volume 45, Number 2, Pages 203–214 (Mi al142)  

A Characterization of Alternating Groups. II

V. D. Mazurov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: Let $G$ be a group. A subset $X$ of $G$ is called an $A$-subset if $X$ consists of elements of order 3, $X$ is invariant in $G$, and every two non-commuting members of $X$ generate a subgroup isomorphic to $A_4$ or to $A_5$. Let $X$ be the $A$-subset of $G$. Define a non-oriented graph $\Gamma(X)$ with vertex set $X$ in which two vertices are adjacent iff they generate a subgroup isomorphic to $A_4$.
Theorem 1 states the following. Let $X$ be a non-empty $A$-subset of $G$. (1) Suppose that $C$ is a connected component of $\Gamma(X)$ and $H=\langle C\rangle$. If $H\cap X$ does not contain a pair of elements generating a subgroup isomorphic to $A_5$ then $H$ contains a normal elementary Abelian 2-subgroup of index 3 and a subgroup of order 3 which coincides with its centralizer in $H$. In the opposite case, $H$ is isomorphic to the alternating group $A(I)$ for some $($possibly infinite$)$ set $I$, $|I|\geqslant 5$. (2) The subgroup $\langle X^G\rangle$ is a direct product of subgroups $\langle C_\alpha\rangle$ generated by some connected components $C_\alpha$ of $\Gamma (X)$.
Theorem 2 asserts the following. Let $G$ be a group and $X\subseteq G$ be a non-empty $G$-invariant set of elements of order 5 such that every two non-commuting members of $X$ generate a subgroup isomorphic to $A_5$. Then $\langle X^G\rangle$ is a direct product of groups each of which either is isomorphic to $A_5$ or is cyclic of order 5.
Keywords: alternating group, non-oriented graph.
Received: 12.09.2005
English version:
Algebra and Logic, 2006, Volume 45, Issue 2, Pages 117–123
DOI: https://doi.org/10.1007/s10469-006-0010-y
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: V. D. Mazurov, “A Characterization of Alternating Groups. II”, Algebra Logika, 45:2 (2006), 203–214; Algebra and Logic, 45:2 (2006), 117–123
Citation in format AMSBIB
\Bibitem{Maz06}
\by V.~D.~Mazurov
\paper A Characterization of Alternating Groups. II
\jour Algebra Logika
\yr 2006
\vol 45
\issue 2
\pages 203--214
\mathnet{http://mi.mathnet.ru/al142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2260331}
\zmath{https://zbmath.org/?q=an:1117.20002}
\transl
\jour Algebra and Logic
\yr 2006
\vol 45
\issue 2
\pages 117--123
\crossref{https://doi.org/10.1007/s10469-006-0010-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646480889}
Linking options:
  • https://www.mathnet.ru/eng/al142
  • https://www.mathnet.ru/eng/al/v45/i2/p203
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:503
    Full-text PDF :138
    References:70
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024