Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2006, Volume 45, Number 2, Pages 185–202 (Mi al141)  

This article is cited in 29 scientific papers (total in 29 papers)

Recognition of Simple Groups $U_3(Q)$ by Element Orders

A. V. Zavarnitsin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: An exhaustive solution is given to the recognition-by-spectrum problem for finite, simple, three-dimensional unitary groups. For every such group, the number of non-isomorphic, finite, isospectral groups is determined. In particular, a new counterexample to Problem 13.63 in the Kourovka Notebook is furnished.
Keywords: finite group, element order, recognition, spectrum.
Received: 05.01.2005
English version:
Algebra and Logic, 2006, Volume 45, Issue 2, Pages 106–116
DOI: https://doi.org/10.1007/s10469-006-0009-4
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: A. V. Zavarnitsin, “Recognition of Simple Groups $U_3(Q)$ by Element Orders”, Algebra Logika, 45:2 (2006), 185–202; Algebra and Logic, 45:2 (2006), 106–116
Citation in format AMSBIB
\Bibitem{Zav06}
\by A.~V.~Zavarnitsin
\paper Recognition of Simple Groups $U_3(Q)$ by Element Orders
\jour Algebra Logika
\yr 2006
\vol 45
\issue 2
\pages 185--202
\mathnet{http://mi.mathnet.ru/al141}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2260330}
\zmath{https://zbmath.org/?q=an:1117.20010}
\transl
\jour Algebra and Logic
\yr 2006
\vol 45
\issue 2
\pages 106--116
\crossref{https://doi.org/10.1007/s10469-006-0009-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646491147}
Linking options:
  • https://www.mathnet.ru/eng/al141
  • https://www.mathnet.ru/eng/al/v45/i2/p185
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:582
    Full-text PDF :208
    References:75
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024