Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 1973, Volume 12, Number 2, Pages 211–219 (Mi al1378)  

This article is cited in 1 scientific paper (total in 1 paper)

Every recursively enumerable extension of a theory of linear order has a constructive model

M. G. Peretyat'kin
Full-text PDF (363 kB) Citations (1)
Received: 19.12.1972
Bibliographic databases:
Document Type: Article
UDC: 517.15
Language: Russian
Citation: M. G. Peretyat'kin, “Every recursively enumerable extension of a theory of linear order has a constructive model”, Algebra Logika, 12:2 (1973), 211–219
Citation in format AMSBIB
\Bibitem{Per73}
\by M.~G.~Peretyat'kin
\paper Every recursively enumerable extension of a theory of linear order
has a constructive model
\jour Algebra Logika
\yr 1973
\vol 12
\issue 2
\pages 211--219
\mathnet{http://mi.mathnet.ru/al1378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0419211}
Linking options:
  • https://www.mathnet.ru/eng/al1378
  • https://www.mathnet.ru/eng/al/v12/i2/p211
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024