Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 5, Pages 560–582 (Mi al131)  

This article is cited in 3 scientific papers (total in 3 papers)

A Modal Logic That is Complete with Respect to Strictly Linearly Ordered $A$-Models

V. F. Murzina

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (248 kB) Citations (3)
References:
Abstract: An axiomatization is furnished for a polymodal logic of strictly linearly ordered $A$-frames: for frames of this kind, we consider a language of polymodal logic with two modal operators, $\Box_<$ and $\Box_\prec$. In the language, along with the operators, we introduce a constant $\beta$, which describes a basis subset. In the language with the two modal operators and constant $\beta$, an $L\alpha$-calculus is constructed. It is proved that such is complete w. r. t the class of all strictly linearly ordered $A$-frames. Moreover, it turns out that the calculus in question possesses the finite-model property and, consequently, is decidable.
Keywords: calculus, polymodal logic, strictly linearly ordered $A$-frame, decidability.
Received: 24.12.2004
English version:
Algebra and Logic, 2005, Volume 44, Issue 5, Pages 313–325
DOI: https://doi.org/10.1007/s10469-005-0030-z
Bibliographic databases:
UDC: 512.543.7
Language: Russian
Citation: V. F. Murzina, “A Modal Logic That is Complete with Respect to Strictly Linearly Ordered $A$-Models”, Algebra Logika, 44:5 (2005), 560–582; Algebra and Logic, 44:5 (2005), 313–325
Citation in format AMSBIB
\Bibitem{Mur05}
\by V.~F.~Murzina
\paper A Modal Logic That is Complete with Respect to Strictly Linearly Ordered $A$-Models
\jour Algebra Logika
\yr 2005
\vol 44
\issue 5
\pages 560--582
\mathnet{http://mi.mathnet.ru/al131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195020}
\zmath{https://zbmath.org/?q=an:1106.03015}
\transl
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 5
\pages 313--325
\crossref{https://doi.org/10.1007/s10469-005-0030-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27544473747}
Linking options:
  • https://www.mathnet.ru/eng/al131
  • https://www.mathnet.ru/eng/al/v44/i5/p560
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:404
    Full-text PDF :104
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024