Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 3, Pages 269–304 (Mi al112)  

This article is cited in 13 scientific papers (total in 13 papers)

Bounded Algebraic Geometry over a Free Lie Algebra

E. Yu. Daniyarova, V. N. Remeslennikov

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
References:
Abstract: Bounded algebraic sets over a free Lie algebra $F$ over a field $k$ are classified in three equivalent languages: (1) in terms of algebraic sets; (2) in terms of radicals of algebraic sets; (3) in terms of coordinate algebras of algebraic sets.
Keywords: arithmetic hierarchy, Rogers semilattice, elementary theory.
Received: 20.04.2004
Revised: 06.12.2004
English version:
Algebra and Logic, 2005, Volume 44, Issue 3, Pages 148–167
DOI: https://doi.org/10.1007/s10469-005-0017-9
Bibliographic databases:
UDC: 512.55+512.7
Language: Russian
Citation: E. Yu. Daniyarova, V. N. Remeslennikov, “Bounded Algebraic Geometry over a Free Lie Algebra”, Algebra Logika, 44:3 (2005), 269–304; Algebra and Logic, 44:3 (2005), 148–167
Citation in format AMSBIB
\Bibitem{DanRem05}
\by E.~Yu.~Daniyarova, V.~N.~Remeslennikov
\paper Bounded Algebraic Geometry over a~Free Lie~Algebra
\jour Algebra Logika
\yr 2005
\vol 44
\issue 3
\pages 269--304
\mathnet{http://mi.mathnet.ru/al112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170688}
\zmath{https://zbmath.org/?q=an:1150.17009}
\transl
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 3
\pages 148--167
\crossref{https://doi.org/10.1007/s10469-005-0017-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22444433900}
Linking options:
  • https://www.mathnet.ru/eng/al112
  • https://www.mathnet.ru/eng/al/v44/i3/p269
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:498
    Full-text PDF :142
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024