|
This article is cited in 1 scientific paper (total in 1 paper)
Some more examples of undecidable theories
M. A. Taislin
Abstract:
1. Let $L(\sigma)$ be a class of all relational systems of finite type $\sigma$.
Suppose $\sigma'$ be a type which includes the type $\sigma$ and $D_{\sigma'}\ne D_{\sigma}$.
Let $\sigma'(\Lambda )=1$ whenever $\Lambda \in D_{\sigma'}\setminus D_{\sigma}$.
Let $K\subset L(\sigma)$ and $K(\sigma')=\{M\in L(\sigma')| M\upharpoonright \sigma\in K\}$.
It is for a number of classes $K\subset L(\sigma)$ that the elementary theory of class $K(\sigma')$
is hereditarily undecidable. This holds for example, if class $K\subset L(\sigma)$ satisfies the conditions 1.-3.
2. When denoting $A(n,\tau,\Lambda )$ resp. $A^*(n,\tau,\Lambda )$ free algebras with $n$ free generators
in the class of associative commutative $\tau$-nilpotent algebras over field $\Lambda $ resp. in the
class of associative $\tau$-nilpotent algebras over field $\Lambda $ and
putting $A(n,\Lambda )=\{A(n,\tau,\Lambda )| \tau=1,2,\dots\}$, $A^*(n,\Lambda )=\{A^*(n,\tau,\Lambda )| \tau=1,2,\dots\}$
it is proved that the elementary theories of the classes $A(n,\Lambda )$, $A^*(n,\Lambda )$ are hereditarily
undecidable for $n\geqslant2$ if $\Lambda $ is field of characteristic $0$ and for $n\geqslant 3$ in each other
cases. In all cases the elementary theory of class $A^*(2,\Lambda )$ is hereditarily undecidable.
Received: 17.04.1967
Citation:
M. A. Taislin, “Some more examples of undecidable theories”, Algebra i Logika. Sem., 6:3 (1967), 105–111
Linking options:
https://www.mathnet.ru/eng/al1112 https://www.mathnet.ru/eng/al/v6/i3/p105
|
Statistics & downloads: |
Abstract page: | 57 | Full-text PDF : | 23 |
|