Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2006, Volume 45, Number 1, Pages 3–19 (Mi al111)  

This article is cited in 9 scientific papers (total in 9 papers)

Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even

O. A. Alekseeva

Chelyabinsk Institute of Humanities
Full-text PDF (220 kB) Citations (9)
References:
Abstract: It is proved that if $G$ is a finite group with an element order set as in the simple group ${^3}D_4(q)$, where $q$ is even, then the commutant of $G/F(G)$ is isomorphic to ${^3}D_4(q)$ and the factor group $G/G'$ is a cyclic $\{2,3\}$-group.
Keywords: finite group, simple group, set of element orders, quasirecognizability, prime graph.
Received: 25.03.2005
Revised: 08.07.2005
English version:
Algebra and Logic, 2006, Volume 45, Issue 1, Pages 1–11
DOI: https://doi.org/10.1007/s10469-006-0001-z
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: O. A. Alekseeva, “Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even”, Algebra Logika, 45:1 (2006), 3–19; Algebra and Logic, 45:1 (2006), 1–11
Citation in format AMSBIB
\Bibitem{Ale06}
\by O.~A.~Alekseeva
\paper Quasirecognizability by the Set of Element Orders for Groups ${^3}D_4(q)$, for $q$ Even
\jour Algebra Logika
\yr 2006
\vol 45
\issue 1
\pages 3--19
\mathnet{http://mi.mathnet.ru/al111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2259473}
\zmath{https://zbmath.org/?q=an:1117.20018}
\elib{https://elibrary.ru/item.asp?id=9127528}
\transl
\jour Algebra and Logic
\yr 2006
\vol 45
\issue 1
\pages 1--11
\crossref{https://doi.org/10.1007/s10469-006-0001-z}
\elib{https://elibrary.ru/item.asp?id=13503494}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-32544435269}
Linking options:
  • https://www.mathnet.ru/eng/al111
  • https://www.mathnet.ru/eng/al/v45/i1/p3
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:427
    Full-text PDF :105
    References:85
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024