Algebra i Logika. Seminar
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Logika. Seminar, 1967, Volume 6, Number 3, Pages 39–49 (Mi al1106)  

This article is cited in 2 scientific papers (total in 3 papers)

On the rational points over Henselian fields

Yu. L. Ershov
Full-text PDF (421 kB) Citations (3)
Abstract: Theorem I gives the necessary and sufficient condition for an algebraic variety to have a rational point over a field with nontrivial henselian valuation. Theorem [2] gives the necessary and sufficient condition for a system of equations over algebraic complete 2 valuation ring to have a rational point. This theorem extends the M. Greenberg's result [4].
Received: 23.03.1967
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. L. Ershov, “On the rational points over Henselian fields”, Algebra i Logika. Sem., 6:3 (1967), 39–49
Citation in format AMSBIB
\Bibitem{Ers67}
\by Yu.~L.~Ershov
\paper On the rational points over Henselian fields
\jour Algebra i Logika. Sem.
\yr 1967
\vol 6
\issue 3
\pages 39--49
\mathnet{http://mi.mathnet.ru/al1106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0220735}
Linking options:
  • https://www.mathnet.ru/eng/al1106
  • https://www.mathnet.ru/eng/al/v6/i3/p39
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024