Algebra i Logika. Seminar
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Logika. Seminar, 1967, Volume 6, Number 3, Pages 25–30 (Mi al1104)  

This article is cited in 2 scientific papers (total in 2 papers)

Multinilponent groups

Yu. M. Gorčakov
Full-text PDF (195 kB) Citations (2)
Abstract: Let $\mathfrak{N}_k$ be the variety of all nilpoteht groups of class $\leqslant k$. From the varieties $\mathfrak{N}_{k_1},\dots,\mathfrak{N}_{k_s}$ the variety $\mathfrak{N}$ is constructed by intersections and multiplications. Any group of variety $\mathfrak{N}$ is called the multipolynilpotent group. In this note is proved Malcev's hypothesis: free multipolynilpotent group $N$ satisfies the following conditions:
  • $\bigcap\limits_n\gamma_n(N)=\{1\}$, where $\gamma_n(N)$ is $n$ member of descending central series of the group $N$, $n$ is natural number,
  • factors $\gamma_n(N)/\gamma_{n+1}(N)$ are free abelian groups.
Received: 07.05.1967
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. M. Gorčakov, “Multinilponent groups”, Algebra i Logika. Sem., 6:3 (1967), 25–30
Citation in format AMSBIB
\Bibitem{Gor67}
\by Yu.~M.~Gor{\v{c}}akov
\paper Multinilponent groups
\jour Algebra i Logika. Sem.
\yr 1967
\vol 6
\issue 3
\pages 25--30
\mathnet{http://mi.mathnet.ru/al1104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0219619}
Linking options:
  • https://www.mathnet.ru/eng/al1104
  • https://www.mathnet.ru/eng/al/v6/i3/p25
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024