Algebra i Logika. Seminar
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Logika. Seminar, 1967, Volume 6, Number 2, Pages 77–88 (Mi al1097)  

This article is cited in 1 scientific paper (total in 1 paper)

On one-sided orders in groups with ascending central series

D. M. Smirnov
Full-text PDF (421 kB) Citations (1)
Abstract: It is proved, that for the right-ordered $Z-A$-group $Q$ the following four properties are equivalent:
1 ) the group $Q$ is archimedean,
2 ) the group $Q$ has no proper convex subgroups,
3 ) in the group $Q$ all abelian subgroups are archimedean,
4) the group $Q$ has the archimedean embedded centre $Z$, i.e . $(\forall q\in Q, \forall z\in Z)\ q>z>1\to (\exists n>0)\ z^n>q$.
In the paper [1] it was demonstrated the example of the right-ordered metabelian group, which has the properties 2) and 3), but is not archimedean.
Received: 01.03.1967
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. M. Smirnov, “On one-sided orders in groups with ascending central series”, Algebra i Logika. Sem., 6:2 (1967), 77–88
Citation in format AMSBIB
\Bibitem{Smi67}
\by D.~M.~Smirnov
\paper On one-sided orders in groups with ascending central series
\jour Algebra i Logika. Sem.
\yr 1967
\vol 6
\issue 2
\pages 77--88
\mathnet{http://mi.mathnet.ru/al1097}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0214522}
Linking options:
  • https://www.mathnet.ru/eng/al1097
  • https://www.mathnet.ru/eng/al/v6/i2/p77
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024