Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 6, Pages 749–758 (Mi al109)  

This article is cited in 1 scientific paper (total in 1 paper)

The Löwenheim–Skolem–Mal'tsev Theorem for $\mathbb{HF}$-Structures

V. G. Puzarenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (185 kB) Citations (1)
References:
Abstract: We deal with the problem asking whether hereditarily finite superstructures have elementary extensions of the form $\mathbb{HF}(\mathfrak M)$. In so doing, we settle the question whether a theory for some hereditarily finite superstructure have $\mathbb{HF}(\mathfrak M)$ models of arbitrarily large cardinality. A Hanf number is shown to exist, and we provide an exact bound for the countable case.
Keywords: hereditarily finite superstructure, Hanf number.
Received: 18.09.2002
English version:
Algebra and Logic, 2004, Volume 43, Issue 6, Pages 418–423
DOI: https://doi.org/10.1023/B:ALLO.0000048830.64509.c7
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: V. G. Puzarenko, “The Löwenheim–Skolem–Mal'tsev Theorem for $\mathbb{HF}$-Structures”, Algebra Logika, 43:6 (2004), 749–758; Algebra and Logic, 43:6 (2004), 418–423
Citation in format AMSBIB
\Bibitem{Puz04}
\by V.~G.~Puzarenko
\paper The L\"owenheim--Skolem--Mal'tsev Theorem for $\mathbb{HF}$-Structures
\jour Algebra Logika
\yr 2004
\vol 43
\issue 6
\pages 749--758
\mathnet{http://mi.mathnet.ru/al109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2135390}
\zmath{https://zbmath.org/?q=an:1097.03024}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 6
\pages 418--423
\crossref{https://doi.org/10.1023/B:ALLO.0000048830.64509.c7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249091930}
Linking options:
  • https://www.mathnet.ru/eng/al109
  • https://www.mathnet.ru/eng/al/v43/i6/p749
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024